Amiloride uptake and toxicity in fission yeast are caused by the pyridoxine transporter encoded by bsu1+ (car1+).

نویسندگان

  • Jürgen Stolz
  • Heike J P Wöhrmann
  • Christian Vogl
چکیده

Amiloride, a diuretic drug that acts by inhibition of various sodium transporters, is toxic to the fission yeast Schizosaccharomyces pombe. Previous work has established that amiloride sensitivity is caused by expression of car1+, which encodes a protein with similarity to plasma membrane drug/proton antiporters from the multidrug resistance family. Here we isolated car1+ by complementation of Saccharomyces cerevisiae mutants that are deficient in pyridoxine biosynthesis and uptake. Our data show that Car1p represents a new high-affinity, plasma membrane-localized import carrier for pyridoxine, pyridoxal, and pyridoxamine. We therefore propose the gene name bsu1+ (for vitamin B6 uptake) to replace car1+. Bsu1p displays an acidic pH optimum and is inhibited by various protonophores, demonstrating that the protein works as a proton symporter. The expression of bsu1+ is associated with amiloride sensitivity and pyridoxine uptake in both S. cerevisiae and S. pombe cells. Moreover, amiloride acts as a competitor of pyridoxine uptake, demonstrating that both compounds are substrates of Bsu1p. Taken together, our data show that S. pombe and S. cerevisiae possess unrelated plasma membrane pyridoxine transporters. The S. pombe protein may be structurally related to the unknown human pyridoxine transporter, which is also inhibited by amiloride.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe.

Thiamine is an essential component of the human diet and thiamine diphosphate-dependent enzymes play an important role in carbohydrate metabolism in all living cells. Although the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe can derive thiamine from biosynthesis, both are also able to take up thiamine from external sources, leading to the down-regulation of the enzymes involved...

متن کامل

Effect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex

Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...

متن کامل

A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway.

Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble natur...

متن کامل

Mechanism and regulation of vitamin B(6) uptake by renal tubular epithelia: studies with cultured OK cells.

The kidneys play an important role in regulating vitamin B(6) body homeostasis, but limited information exists regarding the mechanism of pyridoxine uptake by renal epithelial cells, and no study exists on its regulation. To address these issues, we used the renal opossum-derived tubular epithelial (opossum kidney; OK) cells and found pyridoxine uptake to 1) be temperature and energy dependent,...

متن کامل

Functional Characterization of Two Putative Nucleobase Transporters in Arabidopsis Using Heterologous Complementation in Yeast

Miller, Sara E. M.S., Purdue University, August 2012. Functional Characterization of Two Putative Nucleobase Transporters in Arabidopsis Using Heterologous Complementation in Yeast. Major Professor: George S. Mourad. To identify the substrate profile function for AtNAT5, one of the twelve members of the NAT/NCS2 gene family putatively identified to transport xanthine and/or uric acid, and to id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2005